博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Druid:一个用于大数据实时处理的开源分布式系统
阅读量:7188 次
发布时间:2019-06-29

本文共 1241 字,大约阅读时间需要 4 分钟。

是一个用于大数据实时查询和分析的高容错、高性能开源分布式系统,旨在快速处理大规模的数据,并能够实现快速查询和分析。尤其是当发生代码部署、机器故障以及其他产品系统遇到宕机等情况时,Druid仍能够保持100%正常运行。创建Druid的最初意图主要是为了解决查询延迟问题,当时试图使用Hadoop来实现交互式查询分析,但是很难满足实时分析的需要。而Druid提供了以交互方式访问数据的能力,并权衡了查询的灵活性和性能而采取了特殊的存储格式。

Druid功能介于和之间,它几乎实现了Dremel的所有功能,并且从PowerDrill吸收一些有趣的数据格式。Druid允许以类似Dremel和PowerDrill的方式进行单表查询,同时还增加了一些新特性,如为局部嵌套数据结构提供列式存储格式、为快速过滤做索引、实时摄取和查询、高容错的分布式体系架构等。从官方得知,Druid的具有以下主要特征:

  • 为分析而设计——Druid是为工作流的探索性分析而构建,它支持各种过滤、聚合和查询等类;
  • 快速的交互式查询——Druid的低延迟数据摄取架构允许事件在它们创建后毫秒内可被查询到;
  • 高可用性——Druid的数据在系统更新时依然可用,规模的扩大和缩小都不会造成数据丢失;
  • 可扩展——Druid已实现每天能够处理数十亿事件和TB级数据。

Druid应用最多的是类似于广告分析创业公司中的应用场景,如广告分析、互联网广告系统监控以及网络监控等。当业务中出现以下情况时,Druid是一个很好的技术方案选择:

  • 需要交互式聚合和快速探究大量数据时;
  • 需要实时查询分析时;
  • 具有大量数据时,如每天数亿事件的新增、每天数10T数据的增加;
  • 对数据尤其是大数据进行实时分析时;
  • 需要一个高可用、高容错、高性能数据库时。

一个Druid集群有各种类型的节点(Node)组成,每个节点都可以很好的处理一些的事情,这些节点包括对非实时数据进行处理存储和查询的、实时摄取数据、监听输入数据流的、监控Historical节点的、接收来自外部客户端的查询和将查询转发到Realtime和Historical节点的、负责索引服务的。

查询操作中数据流和各个节点的关系如下图所示:

如下图是Druid集群的管理层架构,该图展示了相关节点和集群管理所依赖的其他组件(如负责服务发现的)的关系:

Druid已基于协议开源,代码托管在,其当前最新稳定版本是。当前,Druid已有63个代码贡献者和将近2000个关注。Druid的主要贡献者包括广告分析创业公司Metamarkets、电影流媒体网站、Yahoo等公司。Druid官方还对Druid同、、、、、等在容错能力、灵活性、查询性能等方便进行了对比说明。更多关于Druid的信息,大家还可以参考官方提供的、 、等。

本文转自茄子_2008博客园博客,原文链接:http://www.cnblogs.com/xd502djj/p/4825506.html,如需转载请自行联系原作者。

你可能感兴趣的文章
内网地址的网段
查看>>
克隆虚拟机、Linux机器相互登录
查看>>
oracle中使用decode进行数据的列转换为行的试验
查看>>
快速构建Windows 8风格应用23-App Bar概述及使用规范
查看>>
Saltstack系列(二) Saltstack分组
查看>>
.NET的XMPP开发包 MatriX
查看>>
JQuery easyui Datagrid 分页事件
查看>>
MPLS 转发原理
查看>>
android 手机型号,版本号,
查看>>
家庭宽带之IPv6网络测试
查看>>
让宏哥告诉你什么叫做 OO -- 放在博客比较有价值
查看>>
filter的时间过滤有关问题
查看>>
access手工注入笔记
查看>>
zookeeper原理(转)
查看>>
垂直居中的几种方法
查看>>
我的友情链接
查看>>
PTN960
查看>>
$_FILES[‘file’][‘error’] 错误代码和相关的错误常量
查看>>
将项目加入maven管理时报错
查看>>
Qt线程
查看>>